Bound on the Slope of Steady Water Waves with Favorable Vorticity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bound on the slope of steady water waves with favorable vorticity

We consider the angle θ of inclination (with respect to the horizontal) of the profile of a steady 2D inviscid symmetric periodic or solitary water wave subject to gravity. Although θ may surpass 30◦ for some irrotational waves close to the extreme wave, Amick [Ami87] proved that for any irrotational wave the angle must be less than 31.15◦. Is the situation similar for periodic or solitary wave...

متن کامل

Symmetry of steady periodic water waves with vorticity

We discuss certain a priori geometric properties of two-dimensional steady gravity water waves with vorticity. The main result states that for an arbitrary distribution of vorticity, any periodic wave of finite depth with a single trough (a minimum over one period) is symmetric about a single crest (a maximum over one period) and the wave profile decreases (strictly) monotonically from crest to...

متن کامل

Symmetry of steady periodic water waves with vorticity.

The symmetry and monotonicity properties of steady periodic gravity water waves are established for arbitrary vorticities if the wave profile is monotone near the trough and every streamline attains a minimum below the trough. The proof uses the method of moving planes.

متن کامل

Regularity for steady periodic capillary water waves with vorticity.

In the following, we prove new regularity results for two-dimensional steady periodic capillary water waves with vorticity, in the absence of stagnation points. Firstly, we prove that if the vorticity function has a Hölder-continuous first derivative, then the free surface is a smooth curve and the streamlines beneath the surface will be real analytic. Furthermore, once we assume that the vor...

متن کامل

Symmetry of Solitary Water Waves with Vorticity

Symmetry and monotonicity properties of solitary water-waves of positive elevation with supercritical values of parameter are established for an arbitrary vorticity. The proof uses the detailed knowledge of asymptotic decay of supercritical solitary waves at infinity and the method of moving planes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2016

ISSN: 0003-9527,1432-0673

DOI: 10.1007/s00205-016-1027-6